N-Channel Power MOSFET 60 V, 97 A, 7.8 m Ω

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

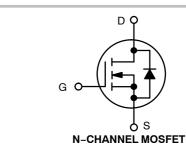
MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

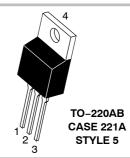
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage - Continuous			V _{GS}	±20	V
Gate-to-Source Voltage – Nonrepetitive (T _P < 10 μs)			V _{GS}	30	V
Continuous Drain Current	Steady State	T _C = 25°C	I _D	97	Α
Current	Siale	T _C = 100°C		68	
Power Dissipation	Steady State	T _C = 25°C	P _D	150	W
Pulsed Drain Current	d Drain Current t _p = 10 μs			383	Α
Operating and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	97	Α
Single Pulse Drain-to-Source Avalanche Energy (L = 0.1 mH, I _{L(pk)} = 56 A)			E _{AS}	157	mJ
Peak Diode Recovery (dV/dt)			dV/dt	4.1	V/ns
Lead Temperature for Soldering Purposes (1/8" from Case for 10 Seconds)			TL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	1.0	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	36	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	7.8 m Ω @ 10 V	97 A

MARKING DIAGRAMS & PIN ASSIGNMENTS

A Drain

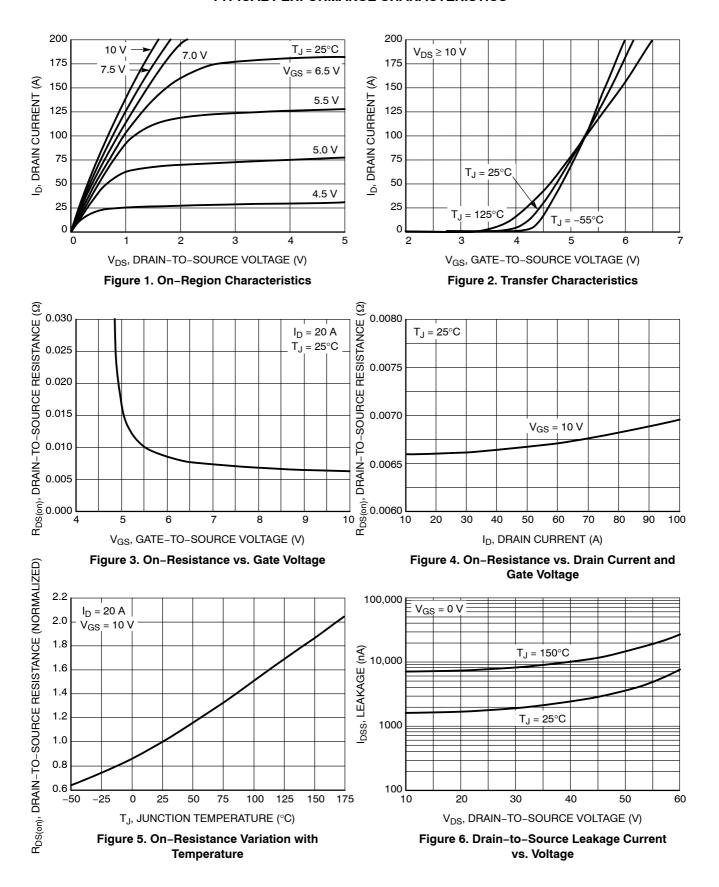
NTP
5863NG
AYWW

1 3 Source
2 Drain
= Pb-Free Device

G = Pb-Free Device A = Assembly Location

WW = Work Week

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C Unless otherwise specified)

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			-	•	-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, ref to 25°C			47		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V	T _J = 25°C			1.0	μΑ
		$V_{DS} = 60 \text{ V}$	T _J = 125°C			50	1
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$				±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$	I _D = 250 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(th)} /T _J				9.1		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 \	V, I _D = 20 A		6.5	7.8	mΩ
Forward Transconductance	9FS	V _{DS} = 15 \	/, I _D = 30 A		12		S
CHARGES, CAPACITANCES & GATE RESIST	ANCE						
Input Capacitance	C _{iss}				3200		pF
Output Capacitance	C _{oss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz			350		
Transfer Capacitance	C _{rss}				230		
Total Gate Charge	Q _{G(TOT)}				55		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 48 \text{ A}$			3.4		
Gate-to-Source Charge	Q_{GS}				14.5		
Gate-to-Drain Charge	Q_{GD}				19		
Gate Resistance	R_{G}				0.4		Ω
SWITCHING CHARACTERISTICS, V _{GS} = 10 V	(Note 3)						
Turn-On Delay Time	t _{d(on)}				10		ns
Rise Time	t _r	V _{GS} = 10 V,	V _{DD} = 48 V,		34]
Turn-Off Delay Time	t _{d(off)}	$I_D = 48 \text{ A}, R_G = 2.5 \Omega$			25		
Fall Time	t _f				9.0		
DRAIN-SOURCE DIODE CHARACTERISTICS	3						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V	T _J = 25°C		0.96	1.5	V_{dc}
		I _S = 48 A	T _J = 150°C		0.85		<u> </u>
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 V_{dc}, I_{S} = 48 A_{dc},$ $dI_{S}/dt = 100 A/\mu s$			32		ns
Charge Time	ta				20		1
Discharge Time	t _b				12		
Reverse Recovery Stored Charge	Q _{RR}				28		nC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

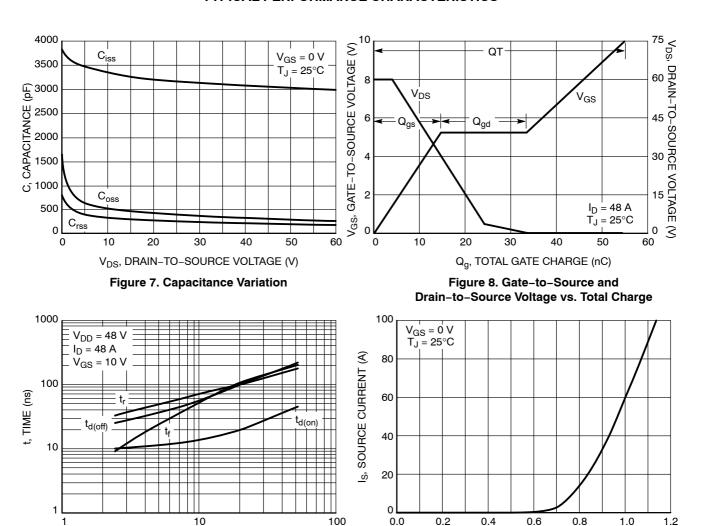


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

 R_G , GATE RESISTANCE (Ω)

 $\label{eq:VSD} V_{SD}, \, \text{SOURCE-TO-DRAIN VOLTAGE (V)}$ Figure 10. Diode Forward Voltage vs. Current

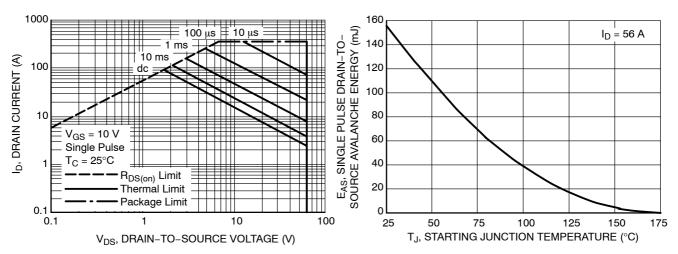


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

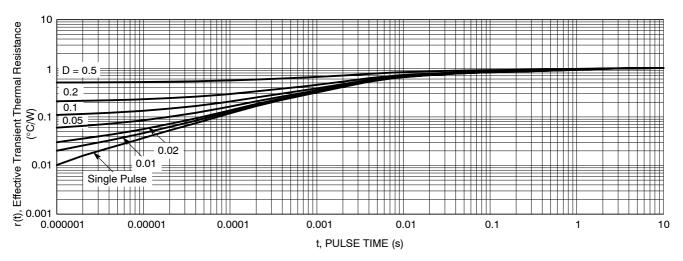
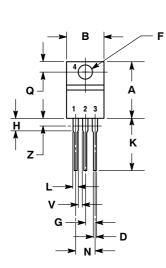
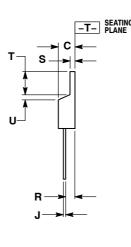


Figure 13. Thermal Response


ORDERING INFORMATION


Device	Package	Shipping [†]
NTP5863NG	TO-220AB (Pb-Free)	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AF

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 V14 FM 1092
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 5:

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE 4. DRAIN

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

HandsOn Technology

http://www.handsontec.com

creativity for tomorrow's better living...

HandsOn Tech provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer... Information, education, inspiration and entertainment. Analog and digital; practical and theoretical; software and hardware...

HandsOn Technology support Open Source Hardware(OSHW) Development Platform.

Learn: Design: Share

www.handsontec.com

Handson Technology

http://www.handsontec.com

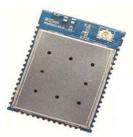
creativity for tomorrow's better living...

www.handsontec.com

Welcome to Handsontec Store

LCD+Keyboard Shield

10-Segments LED Bar Display


Ethernet Module

Arduino Uno

MicroSD Breakout Board

WiFi Module

20x4 LCD Display Module

Stepper Motor Driver

PWM Motor Speed Controller

Breakout Board & Modules

Integrated Circuits

Discrete Parts

Assembled Kits

Connectors